

Characterization of hurricane structure from satellite-derived wind fields

Thomas Florimond, Marcos Portabella, Wenming Lin, Lucas Washburn, Federico Cossu, Albert S. Rabaneda

南京信息工程大学

Norwegian Meteorological

ESA MAXSS project: Extreme wind inter-calibration & validation

- <u>Aim</u>: To adjust radiometers & scatterometers high & extreme winds using SFMR (2010-2020)
 - OSI SAF: ASCAT-A, -B & -C, Rapidscat, OSCAT, OSCAT2, HY-2A & -2B
 - **REMSS**: Windsat (v7), AMSR-2 (v8), SMAP (v1)
 - Ifremer: SMOS (v2)
- Assess spatial representativeness, QC & SFMR calibration effects
- Ensure inter-calibration among all satellite systems
- To adapt triple collocation analysis for extreme wind error characterization of the different wind datasets

SFMR & GPS Dropsonde

2009.08.18 - 21.17.45 4000 NCAR GPS Dropsonde 3500 the definitive atmospheric profiling to 3000 2500 E Altitude () 2000 1000 500 0 6 8 10 12 14 16 Wind speed (m/s)

SFMR:

- Nadir-pointing radiometer at C-band.
- The equivalent neutral surface wind speed retrieved by inversion of a Geophysical Model Function.
- Surface wind retrieval are provided in 1-sec sampling and the aircraft position is assigned to each wind retrieval.

Dropsondes:

- They provide the wind profile
- The 10m equivalent neutral surface wind speed and direction *empirically derived* by the WL150 algorithm.
- Surface wind value consists in an heightweighted average of the dropsonde readings available within the lowest 150m-layer between 10m and 350m.

BEC

IEEC

ASCAT wind field over Hurricane Karl on September 23rd, 2016

- All SFMR wind data available within a 10°x10° box around TC centre
- SFMR collocations in storm-motion centric coordinates
- Model (ECMWF/MM) spatially and temporally interpolated to the Satellite wind field

Extreme wind adjustment using SFMR as reference

Original ASCAT winds

Adjusted ASCAT winds

BEC

IEEC

Barcelona Expert Center

ACAA Institut

- All scatterometer & radiometer winds adjusted using SFMR as reference
- A similar exercise is done with ERA5

ASCAT extreme wind adjustment

ASCAT adjusted wind field over Hurricane Dorian using SFMR winds as calibration reference

Objectives

- Develop algorithms for estimating hurricane structure parameters
- Compare estimates from multiple satellite and hurricane hunter data against reference best track data
- Confront different satellite data products to show which one best reflects the true nature of tropical cyclones

Radial Wind Profile Calculation

- Radial wind profiles interpolated from wind speed field along radial lines (length 500 km)
- Regular intervals of radials (15° spacing) ensure representative sampling

Figure: ASCAT wind field and interpolated profiles for Hurricane Epsilon

Radial Wind Profile Calculation

- Radial wind profiles interpolated from wind speed field along radial lines (length 500 km)
- Regular intervals of radials (15° spacing) ensure representative sampling

300

400

500

Figure: Interpolated wind profile from ASCAT wind field for Hurricane **Epsilon**

Wind Speed Profile Intersections

Several intersection selection techniques:

- Closest/Farthest Method
- Sector-average Method: Uses closest to averaged valid intersections within a TC sector (adopted from Lin et al., 2022)
- Adjacent Method: Uses closest to averaged neighboring valid intersections
- Variance Method: Selects intersection minimizing variance of valid intersections within a_TC_sector
 Azimuth 60.0°

500

Wind Radii Estimation Methods

Two methods for calculating wind radii:

- Mean Method: Averages all valid intersections within each sector
- MAXSS-derived Method: Selects the value closest to 90% of

sorted intersection values

Figure: NE R50 estimates using the mean method (left) and the MAXSS-derived method (right)

Several methods for selecting intersection points or estimating wind radii were analyzed, using scatter plots and several statistical parameters:

- ▶ Bias: *µ* or <*x y*>
- Standard Deviation: σ or SD
- Pearson Correlation Coefficient: ρ

ASCAT vs BT wind radii

Figure: Scatter plots of R34 (top) and R50 (bottom) estimates for ASCAT vs BT using nominal (left) and adjusted (right) ASCAT data

600 700

250

Adjusted ASCAT vs BT Comparison

Table: Statistical performance of the R34 (top) and R50 (bottom) derived from adjusted ASCAT wind data with different methods, using BT data as reference

N = 294		closest	farthest	variance]
	μ	-1.67	-15.12	-3.32	
MAXSS		48.83	58.39	49.04	
σ					
	P	0.789	0.75	0.789	
	μ	6.98	-3.6	4.52	
Mean	σ	43.5	46.86	44.6	
	ρ	0.821	0.809	0.814	

N = 91		closest	farthest	variance
	μ	-23.48	-26.33	-24.27
MAXSS	-	31.43	31.29	31.6
σ				
	ρ	0.778	0.774	0.774
	μ	-18.67	-22.1	-20.19
Mean	σ	29.66	28.65	29.1
	ρ	0.773	0.787	0.782

Mean method:

- slightly outperforms MAXSS-derived method
- is less impacted by the intersection choice method

Increasing the Number of Intervals

63*9

33°N

32°N

31°N

30°N 29°N

28°N

Figure: Adjusted ASCAT vs BT estimates of R34 and R50, using the variance and mean methods, with 24, 48 and 72 intervals

Study of Outliers: Hurricane Close to Land

The land impact invalidate the assumption of steady structure. Possible solution:

► Flag cases with a lot of missing data close to the TC

Figure: Adjusted ASCAT wind radii estimations of Hurricane Matthew on 30/09/2016

Summary of Key Points

Methods Comparison:

Mean method slightly outperforms MAXSS-derived method

ASCAT Winds:

- Adjusted ASCAT more consistent with BT data than nominasCAT
- Valuable information for hurricane advisories

Outliers and Improvements:

- Better dataset filtering
- TC center estimation from ASCAT
- Flag dataset to avoid comparison with BT (e.g., land impact)

Study of Outliers: Partially Caught Hurricane

Possible solutions:

- Improve filtering during the collocation process
- Estimate the TC center location from ASCAT data

Figure: Adjusted ASCAT wind radii estimations of Hurricane Matthew on 01/10/2016

Study of Outliers: Very Large Hurricane

Possible solutions:

- Increase the amount of points necessary for the estimation
- Flag datasets with high maximum wind speed

Figure: Adjusted ASCAT wind radii estimations of Hurricane Epsilon on 21/10/2020, using 24 (left) and 48 (right) intervals